Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 809247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693780

RESUMO

Continuous exposure of tissue antigen (Ag) to the autoantigen-specific regulatory T cells (Treg) is required to maintain Treg-dependent systemic tolerance. Thus, testis autoantigens, previously considered as sequestered, may not be protected by systemic tolerance. We now document that the complete testis antigen sequestration is not valid. The haploid sperm Ag lactate dehydrogenase 3 (LDH3) is continuously exposed and not sequestered. It enters the residual body (RB) to egress from the seminiferous tubules and interact with circulating antibody (Ab). Some LDH3 also remains inside the sperm cytoplasmic droplets (CD). Treg-depletion in the DEREG mice that express diphtheria toxin receptor on the Foxp3 promoter results in spontaneous experimental autoimmune orchitis (EAO) and Ab to LDH3. Unlike the wild-type male mice, mice deficient in LDH3 (wild-type female or LDH3 NULL males) respond vigorously to LDH3 immunization. However, partial Treg depletion elevated the wild-type male LDH3 responses to the level of normal females. In contrast to LDH3, zonadhesin (ZAN) in the sperm acrosome displays properties of a sequestered Ag. However, when ZAN and other sperm Ag are exposed by vasectomy, they rapidly induce testis Ag-specific tolerance, which is terminated by partial Treg-depletion, leading to bilateral EAO and ZAN Ab response. We conclude that some testis/sperm Ag are normally exposed because of the unique testicular anatomy and physiology. The exposed Ag: 1) maintain normal Treg-dependent systemic tolerance, and 2) are pathogenic and serve as target Ag to initiate EAO. Unexpectedly, the sequestered Ags, normally non-tolerogenic, can orchestrate de novo Treg-dependent, systemic tolerance when exposed in vasectomy.


Assuntos
Orquite , Vasectomia , Animais , Autoantígenos , Feminino , Humanos , Tolerância Imunológica , Masculino , Camundongos , Linfócitos T Reguladores
2.
J Clin Invest ; 127(3): 1046-1060, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28218625

RESUMO

Autoimmune responses to meiotic germ cell antigens (MGCA) that are expressed on sperm and testis occur in human infertility and after vasectomy. Many MGCA are also expressed as cancer/testis antigens (CTA) in human cancers, but the tolerance status of MGCA has not been investigated. MGCA are considered to be uniformly immunogenic and nontolerogenic, and the prevailing view posits that MGCA are sequestered behind the Sertoli cell barrier in seminiferous tubules. Here, we have shown that only some murine MGCA are sequestered. Nonsequestered MCGA (NS-MGCA) egressed from normal tubules, as evidenced by their ability to interact with systemically injected antibodies and form localized immune complexes outside the Sertoli cell barrier. NS-MGCA derived from cell fragments that were discarded by spermatids during spermiation. They egressed as cargo in residual bodies and maintained Treg-dependent physiological tolerance. In contrast, sequestered MGCA (S-MGCA) were undetectable in residual bodies and were nontolerogenic. Unlike postvasectomy autoantibodies, which have been shown to mainly target S-MGCA, autoantibodies produced by normal mice with transient Treg depletion that developed autoimmune orchitis exclusively targeted NS-MGCA. We conclude that spermiation, a physiological checkpoint in spermatogenesis, determines the egress and tolerogenicity of MGCA. Our findings will affect target antigen selection in testis and sperm autoimmunity and the immune responses to CTA in male cancer patients.


Assuntos
Autoantígenos/imunologia , Tolerância Imunológica , Túbulos Seminíferos/imunologia , Espermatogênese/imunologia , Espermatozoides/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células de Sertoli/imunologia
3.
J Immunol ; 197(1): 27-41, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27259856

RESUMO

Pernicious anemia and gastric carcinoma are serious sequelae of autoimmune gastritis (AIG). Our study indicates that in adult C57BL/6-DEREG mice expressing a transgenic diphtheria toxin receptor under the Foxp3 promoter, transient regulatory T cell (Treg) depletion results in long-lasting AIG associated with both H(+)K(+)ATPase and intrinsic factor autoantibody responses. Although functional Tregs emerge over time during AIG occurrence, the effector T cells rapidly become less susceptible to Treg-mediated suppression. Whereas previous studies have implicated dysregulated Th1 cell responses in AIG pathogenesis, eosinophils have been detected in gastric biopsy specimens from patients with AIG. Indeed, AIG in DEREG mice is associated with strong Th2 cell responses, including dominant IgG1 autoantibodies, elevated serum IgE, increased Th2 cytokine production, and eosinophil infiltration in the stomach-draining lymph nodes. In addition, the stomachs exhibit severe mucosal and muscular hypertrophy, parietal cell loss, mucinous epithelial cell metaplasia, and massive eosinophilic inflammation. Notably, the Th2 responses and gastritis severity are significantly ameliorated in IL-4- or eosinophil-deficient mice. Furthermore, expansion of both Th2-promoting IFN regulatory factor 4(+) programmed death ligand 2(+) dendritic cells and ILT3(+) rebounded Tregs was detected after transient Treg depletion. Collectively, these data suggest that Tregs maintain physiological tolerance to clinically relevant gastric autoantigens, and Th2 responses can be a pathogenic mechanism in AIG.


Assuntos
Doenças Autoimunes/imunologia , Mucosa Gástrica/imunologia , Gastrite/imunologia , Células Parietais Gástricas/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Células Cultivadas , Humanos , Imunoglobulina G/sangue , Imunomodulação , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Front Immunol ; 5: 242, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904590

RESUMO

Human maternal autoantibodies can trigger autoimmune diseases such as congenital heart block (CHB) in the progeny of women with lupus or Sjogren's disease. The pathogenic effect of early autoantibody (autoAb) exposure has been investigated in a murine neonatal autoimmune ovarian disease (nAOD) model triggered by a unique ZP3 antibody. Although immune complexes (IC) are formed in adult and neonatal ovaries, ZP3 antibody triggers severe nAOD only in <7-day-old neonatal mice. Propensity to nAOD is due to the uniquely hyper-responsive neonatal natural killer (NK) cells that lack the inhibitory Ly49C/I receptors. In nAOD, the neonatal NK cells directly mediate ovarian inflammation and oocyte depletion while simultaneously promoting de novo pathogenic ovarian-specific T cell responses. Resistance to nAOD in older mice results from the emergence of the Ly49C/I(+) NK cells that regulate effector NK cells and from CD25(+) regulatory T cell control. In preliminary studies, FcγRIII(+) NK cells as well as the ovarian resident FcγRIII(+) macrophages and/or dendritic cells were found to be as indispensable players. Activated by ovarian IC, they migrate to lymphoid organs where NK cell priming occurs. Remarkably, the findings in nAOD are very similar to those reported for neonatal responses to a retrovirus and its cognate antibody that lead to long-lasting immunity. Studies on nAOD therefore provide insights into maternal autoAb-mediated neonatal autoimmunity, including CHB, while simultaneously uncovering new properties of the neonatal innate and adaptive responses, lethality of premature infant infection, and novel neonatal antiviral vaccine design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...